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In the analysis of slow processes with characteristic time greatly exceeding the time of propagation of the pressure
wave through the chamber; the working model used for liquid-propellant rocket rotor (LRM) chambers is characterized
by the fact that following injection all the fuel particles are converted into the end products 6f combustion in the time
required for atomization, heating, vaporization, mixing, and chemical reaction. This time, which it a given model is
the same for all fuel particles, is called the combustion time. For the simplest model the combustion time is independ-
ent of the chamber pressure. . »

Several mechanisms have been proposed for combustion instability in the chamber. One was first pointed out by
Karman [1, 2. It is based on the fact that the rate of propellant injection into the chamber has a delay relative to the
pressure drop in the injectors of the order of the relaxation time of the feed line, while combustion follows the rate of
injection with a lag equal to the combustion time. The half-period of the oscillations is approximately equal to the
combustion time and the relaxation time of the system.

Another mechanism for the generation of low-frequency oscillations, which is independent of the process of pro-
pellant injection into the chamber and has therefore been called internal chamber instability, was proposed in [3]. It is
based on the fact that the combustion time in the oscillating mode is also-an oscillatory quantity, The combustion rate
reaches a maximum when the rate of decrease of combustion time is greatest, and a minimum when the rate of increase
of combustion time is greatest. If these oscillations coincide in phase with the pressure oscillations in the chamber,
favorable conditions for self- exc1tat1on exist. -

A detailed analysis of the smmltaneous action of both excitation mechanisms was given in rnonograph [41.

Analysis of the stability of operation of a rocket motor, allowing for compressibility of the liquid in the feed line,
for the simplest monopropellant system, shows that the critical delay time depends on the length of the line and de-
creases with the increase in the frequency of oscillation of the liquid in the line [5]. The best conditions for self-exci-
tation occur when the frequency of oscillation in the feed line is close to one of the natural frequencies of the gases in
the chamber. These oscillations are usually called high-frequency oscillations. The mechansim of high-frequency
instability with constant rate of propellant injection into the chamber was examined in monograph 4] for purely longi-
tudinal oscillations of the gases. o

The stability of operation of LRM depends on the elastic properties of the vehicle in which the motor is mounted.
There is severe additional feedback between the combustion chamber and the feed lines through the elastic vehicle
structure. This question was examined in [6] with reference to a monopropellant system with an incompressible fuel.

The case may arise in practice when the natural frequencies of the wave processes in the feed lines are of the same
order as or lower than the oscillation frequencies determined by the combustion time. This becomes especially impor-
tant if the characteristic frequencies of the elastic oscillations of the vehicle structure, or of the test bed on which the
chamber is mounted, are closé to the frequencies of the wave processes in the feed lines.  Such cases are examined
below.

In this paper the concepts of low-frequency instability of LRM are further develoPed A closed system may be un-
stable even if the combustion time is zero. The frequency of this type of instability is determined By the time of propa-
gation of elastic waves in the feed lines and in the structure and may vary w1dely The combustion time affects the
phase relanons and ‘may be an additional cause of excnanon of osc111at1ons

The dynamic system consists of separate elements joined on the basm of the boundary conditions. Determination
of the parameters of these elements is, generally speakmg an 1ndependent and very complex problem. The closed sys-
tem, represented by a block diagram, is of the multiloop type. The transfer functions of the feed lines are obtained in a
form such that their coupling with the vehicle structure is complete. A solution is obtained in the linear formulation,
and the properties of the transfer functions of the separate elements and of the system as a whole are analyzed using the
special methods of automatic control theory.

1. We shall assume that for low-frequency oscillations: a) the gas pressure py at each moment of time is practic-

ally the same throughout the chamber, b) the combustion time % is the same for all.fuel particles, c¢) the gas flow
through the nozzle is quasi-steady. . The following linearized mass balance equation for the chamber gases was obtained

in [3F
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my. Iy are the mass injection rates of oxidizer and fuel; pg, m"z, mj are the chamber pressure and the mass injection
rates of oxidizer and fuel in the undisturbed regime; 6 is the chamber relaxation time; v is a factor representing the in-
teraction between the combustion process and the oscillations in the combusuon chamber.

The coefficient A allows for the effect of temperature oscillations, Tt characteuzes the chosen propellants and
depends on the ratio r of their mass flow rates in the undisturbed regime and on the chamber pressure. For ordinary bi-
propellant motors, A is a very small positive quantity.

In analyzing the low-frequency mstabmty of a closed system it is of intérest to examme in the first approximation
the simple chamber model in which combustion time 7° is independent of pressure (v:= 0), while the gas temperature in
the chamber is constant irrespective of the pressure oscillations and the propellant ratio (A = 0),

Z—E + B= (o — H) o {2~ 1) + (p + H)pa (5 7%). (1.3)

This model is similar to that of a mon0prope11ant system, but if the properties of the oxidizer and fuel lines are
different, it may be expected that the blpropellant system will be considerably more, complex.

The dimensionless variations Wy, jip must be determined from dynamics of rhe oxidizer and fuel Lines.

We shall express the dynamic properties of the combustmn chamber in terms of complex ratios. Since the varia-
tion of propellant injection into the chamber is assumed to be harmonic, . taking into account the delay arguments z - 7*
and z - 7* - 1, we have [7]
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Here Q is the oscillation frequency, We shall seek a solutlon of (1. 1) in the form
B (2) = Be'*, B(z— ™) = Betster ™)

* Then the complex ratios giving the relation between the output and the input ¢ootdinates are found from the
expressions

. K[Bs llx]=f3/}h""dl/d; K[Br "’B]"“dz/d
d=vt(is+1—v) ¥, . dy=3p—H —2A+Ae'“‘.‘ (1.4)
dg—,:_l/2+H+2A+Ae"“

Hodographs of the vectors K [B, ], . K B, yy] in ‘the complex plane Z = U + i¥ in the interval 0 < s oo are
spirals contracting toward the origin of coordinates. - The smaller 7%, the more the spiral is compressed, and the less the
phase delay ¢ for given values of s. These are typical aperiodic elements of the first order with-delay.

Graphs of the hodographs of the vectors K [[:3 pel} for H = 0.214 are shown in Figs. 1 and 2. ‘Curves 1 and 2 are
plotted for A = v =0, curve 1 corresponding to 7*= 0.5 and curve 2 to T*= 1.5. Figure 2 shows the effect of the coeffi-
cient A, In this case the graphs are plotted for r*= 0.5 and v = 0, curve 3 being for A = 0, curve 4 for A = (.05, and
curve 5 for A = 0.1. If it is assumed, for example, that A = 0, v = 0.2, the graph practically coincides with curve 3.

For small values of s, the coefficient v has almost no effect either on the modulus or on the argument of the com-
plex ratio, while increase of A leads to increase of the modulys, the argument remaining almost unchanged.

2. Variation of the pressure in the combustion chamber causes a variation in vehicle acceleration, or, if the LRM
is mounted on a nonrigid test bed, a change in the strains in the bed, including the propellant lines. In both cases the
motion of the structure and of the attached propellant lines leads 1o a change in pressure upstream- from the combustion
chamber injectors. '

Let us examine the distutbed motion of the vehicle structure. The undisturbed (design) mode of the system corre-
sponds to the condition when the supply of fuel to the combustion chamber and the motor thrust are constant with the
vehicle in straight flight. Since over tens of cycles of the oscillations studied the mass of the vehicle hardly changes .
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from fuel expenditure, we shall "freeze" the coefficients of the equations of motion, i.e., the level in the propellant
tanks, the mass of the vehicle, and the frequency and shape of the natural elastic oscillations of the structure over short
intervals will be considered first,

The variation of the displacement of any cross section of the structure in the direction of its longitudinal axis may
be represented in the form of the sum

(o)
9 (x t)=gq (1) + Z o (@) gn (t). ’ (2.1)
n=}1
Here q.(t) is the variation of the displacement of ihe center of mass of the vehicle, fn(x) is the shape of the n-th
normal harmonic of the longitudinal oscillations of the structure, dqp(t) is the displacement of the relative center of mass
for oscillations of the n-th harmonic of the section for which fn(x) =1.

Determination of the natural frequencies Q, and the characteristic functions fn(x) for an elastic structure is an in~
dependent complex problem and will not be discussed here. We shall consider these data to be known and choose the
frame of reference so as to satisfy the relation

Sm(z)fn(w)d:n+ Syt =0  (k=1, 2%, N). (2.2)
(1] k=1

in which 7, mx) are the length and mass per unit length of the structure, and my, are concentrated masses. In the first
approximation, these masses may be taken to be those of the motor, the propellant pumps, the propellants in the tanks,
etc., which, as a rule, are elastically connected with the walls. ~

Oscillations in the propellant lines cannot, in practice, cause longitudinal oscillations of the structure, and there-
fore the latter are due only to variation in thrust.

We denote by m the mass of the vehicle, by Q the frequency of the natural elastic longitudinal oscillations of the
structure, and by k° the proportionality factor between the variations of chamber pressure and thrust. We assume that the
thrust vector ceincides with the longitudinal axis of the structure. Then, from (2.1) and (2.2), the linearized equations
of perturbed motion of the center of mass of the vehicle and elastic oscillation of the structure relative to the center of
mass may be written in the form

42 t L pe® ’ a2 k
qé'z(a) =g, Z{;.“wn g (£)= — ””’”’B (2.3)

Here m is the reduced mass of the structure, and fnv is the value of the characteristic function at the section
where the chamber pressure is converted into thrust. For the sake of definiteness, we shall identify this section with the

injector head;

i
ma=\ m () f,2 (@) da + Z mkfnk-

0 k=1
We introduce the dimensionless displacements and times

.qc Gn P 2p
=T M=, S=iT.

where a, is the reduced speed of sound in the elastic structure.
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Keeping in mind the fact that 8 (z) = P exp isz, sz = Qt = 00, we may write the solution of (2.3) in the form

N (0) = nce'lma’ N, (6) = ,qneiud.
The relations between 7, N, and 8 are expréssed by the ratios
> ) kn
Kn,Bl=—g, K [y Bl = GG - (2.4
The dimensionless natural frequency w, and the amplification factors k*, kj, are given by

l k°ps°l
0, =05, B=T0h

m
’, ky = k*—m_n.fnv' (2.5)

For frequency variation in the range 0 < @ < + o , ‘the hodographs of vectors K [n¢, Bl K [ng, B! in the com-
plex plane Z = U 4 iV will be straight lines coincident with the real axis.

Due to energy dissipated in the material and joints of the structure, the natural oscillations of the latter are always
damped, and so infinitely great values of the vector K [n,, B] are not physically possible at w = w;,. When it is neces-
sary to determine the oscillations at resonance, resistances proportional to the first power of velocity are introduced
into the elastic oscillation equations.

In this case the ratio K [n,, B] will be complex

K[nn, B]=kn/\Dm ‘ Dn='(pn3~—m2+23nim: (2.6)
where ¢ is the damping factor for the natural oscillations.

The stability analysis is simplified if the forced oscillations of the structure are not expanded as a series in the
characteristic functions fn(x), but are represented in the form

1 =B (T, 0) =B & 0, @M

where f(E, w) is the shape of the forced oscillations. For a nonuniform rod with a stepwise change in mass and stiffness
along its length, even with elastically suspended concentrated masses, the functions f(§, w) without allowance for
energy dissipation, have real values and prove to be comparatively simple. There are no essential difficulties in deter-
mining these functions, and therefore the forced oscillations of the structure may be treated in the form (2.7) instead of
(2.1). When energy dissipation is considered, the functions f(¢, w) are complex.

3. We shall assume for purposes of analysis that the propellant system is one in which the propellants are de-
livered from the tanks to the combustion chamber by pumps. This system is common in high-thrust motors and includes
as a special case systems in which the driving force is compressed gas. The liquid propellants and the supply lines are
not absolutely rigid, but have a certain elasticity which may be shown to have a considerable influence on the oscilla-
tory processes in the lines.

The oxidizer and fuel lines are identical in structure. Each consists of three elements connected in series; pipes
leading from the tank to the pump, the pump, and pipes leading from the pump to the injectors [8]. The first pipe is in
many instances straight and uniform, while the second is usually more complex in shape. It includes a valve, the motor
head space, and, for the coolant, an additional system of branched pipes and a narrow passage. The situation is not one
characterized by a regular geometry, which would allow an exact solution of the problem of combined oscillation of
the elastic volume and the liquid. Because of the elasticity of the propellant lines, however, their volume varies with
variation of pressure, so that a variation of propellant injection into the combustion chamber does not coincide with a
variation in flow through the pump. The quantitative differences depend on propellant line volume and the ratio of
oscillation frequencies.

To solve the hydrodynamic problem, we replace the line

jA : Iy Jov . b joining the pump to the chamber with a model in the form of a
A [_1 AN i Vzl_’_j” % straight tube of constant cross section. We assume, in the first ap-
| DAV e é A | proximation, that the injector head and the inner walls of the
2 Y h J—éf‘-:g —T—E’ & | | chamber are rigid. Then pressure variation in the chamber will not
' ~ cause a change in volume of the propellant lines, which will vary
1 N ° ¢ A i only due to the elasticity of the outer walls. In actuality, the inner
ENEi [ E g TN e 1 walls of the chamber and the injector head have some compliance,
10 el sl /\’m}—gﬂ & and if this is commensurate with that of the outer walls or of the

Fig. 3 liquid, it must be taken into account,
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The model for the oxidizer and fuel lines thus consists of two straight uniform tubes between which the pump is
mounted. There may be compensating bellows at the ends of the tubes, with negligible rigidity in the axial direction
(Fig. 3). In our model we shall consider the bellows as a volume, at any point of which the pressure variation is the
same, while the volume variation is proportional to the pressure variation and the change in distance between end
sections.

The propellant lines are connected to the structure: the near end of the first tube is joined to the bottom of the
tank the far end of the second tube is joined to the injector head of the combustion chamber, while the pump is sus-
pended from the structure on a frame or attached to the combustion chamber [8]. The propellant lines undergo forced
oscillations, whose nature is determined by motion of the corresponding sections of the structure. The presence of the
bellows allows the tubes and the pump to oscillate at different amplitudes.

We denote the characteristic functions as follows: fpy for the flange at the bottom of the tank, fnw for the pump,
and £, for the injector head. Since the bottom of the tank and the thrust frame have some elasticity, the values of
functions f,,,, fuy Fnp are not the same as the values of the functions for the corresponding frames of the structure. The
difference is the greater, the closer the natural oscillation frequency of the structure and the partial oscillation frequen-
cies of the bottom of the tank with the propellant, the motor, and the pump. The valies of functions fpy, fuym 7np M3Y
be modified to some extent by design measures and may therefore be related to a number of variable parameters of the
systemi,

The hydrodynamic problem for the propellant lines is to determine the variation of propellant injection into the
chamber as a function of the small longitudinal oscillations of the structure and the variation of chamber pressure.

We assume that the propellants are perfect liquids, and that the undisturbed flow in the tubes is uniform — veloc-
ity vo. pressure pyand density p, constant; we allow for the elasticity of the tubes via the reduced speed of sound.

Since the equivalent tubes are assumed to be rigid, and friction between the liquid and their walls is not allowed
for in the calculation, small movements of the tubes in the axial direction do not affect the.flow velocity.

The effect on liquid flow of the motions of injector head, pump, and tank bottom, and also changes in the vol-
umes of the bellows are treated as perturbations of the boundary conditions. In view of our assumption that the undis-
turbed motion is quasi-steady, the hydrodynamic problem may be solved as if the tubes were motionless.

We shall employ the method of solution proposed in [13], introducing analogous notation. We denote the dimen-
sional variations of pressure and velocity in the j-th tube by Pxjr Vi the coordinate of the flow cross section in the j-th
tube by X and the time by t, with the following relations between the dimensional and the dimensionless quantities:
lj Qoj Ty

vy DPxj 4 _ T
=2y PiThp T %% HEIT BTL

where agj is the speed of sound in the undisturbed flow, and Z; is the length of the j-th tube. For the tube leading to the
pump, j =1, and beyond the pump j = 2.

Let us examine the boundary conditions. If the pressure of the gases above the surface of the liquid in the tank
remains unchanged in the presence of oscillations of the structure, pressure perturbations at the outlet from the tank to
the tube will be caused only by oscillations of the tank bottom. Neglecting wave formation at the free surface in the
tank, we may write

[=0]
d? ;
Py == porhy ;{t—z—‘[qc () + Z Hnfn1dn (‘)] .
: n=1
Here pgy, hy are the density and the height of the column of liquid in the tank; », is some coefficient depending on
the ratio of the diameters of tank and tube, the shape of the bottom, and the conditions of liquid flow from tank to tube.
We divide this variation by pmaf) — the parameters of the undistutbed flow in the wbe ahead of the pump. We obtain

co hiao?
pr=—0' (N, + 2 Na), pr= Pof;:ha’ Nc='[%£§7’ Np=Netpfr. (3-1)

n=1

The velocity variations at the ends of the tubes are determined from the conditions of flow continuity in the pro-
pellant lines, They depend on the properties and locations of the bellows.

We express the properties of the bellows by means of two independent dimensionless parameters. The geometry
parameter A takes account of the variation in the geometry of the corrugations and in the cross-sectional area of the

bellows.
_1 (?I’_ﬂ_>
iT Fy \ Oz x"xoj—- ’
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Here Fgj is the flow-passage cross-sectional area of the j-th tube, vy 1s the volume. of the bellows, Xqj is the
distance between the ends of the bellows under undisturbed flow conditions.

The elastic parameter t, I takes account of variation of the compensator volume
due to pressure variation
. B0i’Poj ' W x5
Tj = Txj Pxj == .
D =Pgj’

Fojlj Opy Fig. 4

The geometry of the corrugations of the bellows varies in propertion to the
difference of the values fup — fny and fny — fap . We introduce additional subscripts for the bellows parameters,
pressures, and velocities at the ends of the tubes: 1 — for the tube inlet, 2 — for the tube outlet.

We take agz as the scale of the dimensionless variation w of the flow velocity through the pump and write the
dimensionless variations of generalized velocities of the structure as

A dg® a4y o tdg® s
am dt — o Her Un = — 7 " qp o @ = T . (3.2)

Ug = —

Since a positive displacement of the structure q(x, t) has been assumed to correspond to displacement in a direc-
tion opposite to the positive direction of the velocity \f of liquid flow in the tubes, "minus” signs have been introduced
in (3.2).

Klvp.] ]~
Hwp] |
W

% ST H|

L Klw.dfui]

i l/i‘/nuf,] l—-

Fig. 5

Taking p; (€; ) = pj (E) exp is;T; and denoting by v exp is,T, the variation, divided by ap, of the rate of in-
jection of liquid into the chamber k& = ay, / ay, we form the equations of continuity, In order to make fuller use of the
results of the solution [9], we write them in the form

vy = wh + huf, 4 isyrapa
vgy = w + ufyy — iSPiaPyg (3.3)
Vg = VU -t Ufy -+ is37apae

where ufy,, uf,;, uf, are the velocities described by the motion of the characteristic sections of the propellant lines
together with the structure. '

There may be some gas volumes on the suction side of the pump due to cavitation effects-[10]. Assuming that the
variation of these volumes is inversely proportional to the pressure variation upstream from the pump, the equations of
continuity of flow in the propellant lines will have the same form, if we understand 1,y to denote the generalized elas-
tic characteristic of the bellows combined with the gas volumes.

Possible arrangements of the bellows in the propellant lines are illustrated in Fig. 3. For Fig. 3a

Uf g = Ue+ 2 [fpw (1 4 A21) — Aaafpyl un
Pl (3.4)

gy =+ 3 [nw (1 + M) — Aaafo] 2,

n=1
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For Figs. 3b and 3c

ufy = up + 2 [fro (1 + Rog) — Aaofru] up . (3.5)

n=1

The expressions ufyy, for Figs. 3b,d, ufy, for Figs. 3b,c, and ufy for Figs. 3a,d may be obtained from (3.4) and
(3. 5), by putting the coefficients Ay, Ayp, Ayg, respectively, equal to zero. In this case we must put the coefficients
ra1s Tia, o €qual to zero in (3.3).

When the bellows are located between the tube and the tank (Fig. 3b, d), the variation of flow velocity at the out-
let from the tank will differ from the variation vy; of velocity at the inlet to the tube, and therefore the variation of the
pressure drop p* - py; will be expressed by the relation

p* — pn =P My {Uu — 2 [fag (4 4 Ay) — Frwhul isﬂ"npu} , (3.6)

n=1

where ¢, is the resistance coefficient, referred to the velocity, at the outlet from the tank.

For Figs. 3a and 3¢

p* — py =P My (M1= 295) .
ao1

We may also use (3.4) and (3.5) in the case when the motion of the structure is represented in the form (2.7). In
this case we must put u, = 0 and instead of infinite sums of the characteristic functions simply take the differences of
the shapes of the forced oscillations

Wy = — 05 B [f G ©) (1 + A — f By ©) Dl »
Uy = — 10 2B [f (G ©) (L + hag) — f By ©) hual (3.7)
Qo2 .

ufy = — i(oaao—Zﬁ [f Bpy ©) (1 4 Agy) — f (Ew;m) Aol |

where f (§g, @), f(Ey, 0), f (&, ®) are the shapes of the forced oscillations of the flange at the bottom of the tank, the
pump, and the injector head.

By introducing the summing factors uf,,, uf,,, uf, . we have reduced the propellant supply scheme and the
boundary conditions of the problem to the structure investigated in detail in [9]. The results of that paper are used here
without being set out. The formulas for the complex ratios K [py, p*l, K [py, wl, K [v, pel, K (v, pl, K [w, pl,
K [w, pi,] retain their previous form, and the formulas for K [py, ufy,l, K'[v, uf,], K [w, ufy,], K [w, uf,] may be
obtained from the expressions K [pyy, ul, K [v, ul, K [w, u], given in [9] by putting f = f,, = f, = 1. Instead of one
block K [w, u] there will be two parallel blocks with ratios K [w, uf,] and K [w, uf,] = — 1. This difference arises
from the fact that, in general, variation of the geometry of the bellows of the second tube is the result of two simul-
taneous displacements — of the pump and of the injector head.

The ratios for the first tube will be expressed by other formulas, if the bellows are located between the tube and
the tank'(Figs. 3b,d). They may be obtained from (3. 6) by the method described in [9]. The influence of the location
of the bellows on the dynamic properties of the propellant line becomes noticeable if the compliances ry; and 1y of the
bellows are considerable, or if the geometric characteristics (A 3> 0, [Ayl > 0.

4. A block diagram of the physical elements is shown in Fig. 4. Here 1) is the chamber, 2) the vehicle structure
(or test bed), 3) the fuel line, 4) the oxidizer line. Perturbation of the motion of the structure causes a variation of
pressure in the propellant lines and hence a variation of propellant injection into the chamber. A pressure variation
develops in the combustion chamber, affecting the propellant lines and the motion of the structure. The system is thus
a closed one and, moreover, has positive feedback.

Figure 5 shows an expanded block diagram which includes only one propellant line. A second propellant line
should be connected in accordance with Fig. 4. The motion of the structure is assumed to take the form (2.1). Here
only one element is shown for the n-th harmonic of the oscillations of the structure. Infactn=1,2.3..., the ele-
ments being located in parallel, as shown by the broken lines.

The system has three internal feedbacks: between the chamber and the second tube — pressure p = L,8, between
the second and the first tube — velocity w; the third feedback involves the chamber, and results from the fact that the
chamber transfer function deperds on mass propellant injection rate, while the propellant injection rate serves as an
output coordinate for the tube.



Since the dimensionless parameters of the physical elements are different, while the variation of the boundary
conditions at the ends of each tube is determined by the displacements of two sections of the structure, scale factors and
summing factors have been introduced to connect the elements into the over-all scheme. The composition of the sum-
ming factors ufye, Ufy and uf, for Fig. 5 is determined by (3.4) and (3.5).

The variation of the mass injection rate of propellant into the chamber depends on the variation of velocity v and
the variation of density py, at the right-hand end of the second tube. Thus, for the oxidizer, for example, we have

mg == (¥o -+ ac2v) (1 4 pa2) poeF oz, ma® = vozpoafos .

Retaining only small quantities of the first order and noting that py; = pey, on the basis of (1.2) we obtain
—_— + v
Mo = Pog M,

It is convenient to express pressure pyy with the help of formula (2.12) from [9] for j = 2. Noting that pppag? ="
= fip,°, we have

o =L+ Lf, Ly = (My' +My), Ly = ps’/ puae’. (4.1)
On the basis of (3.1) we conclude that
Ly = — 0*N,, Lgy = — 0*Ny, (4.2)

We find expressions for the coefficients Ly, Lgy; Loy, Lgys Ly, from a comparison of (3.2) with (3.4) and (3.5)

Lg = — iway/ ag, Lgy = — idag/ agg »

Ly = L = [fp (1 + A1) — danfiyl (4.3)
Ly, = Ly [fnw (1 -+ M2) — Myafnol s

Ly, = L [fnp (1 -+ Agg) — Agafnul

The part of the block diagram, corresponding to the representation of the displacements of the structure in the
form (2.7), is shown in Fig. 6., Instead of an infinite number of blocks expressing the dynamic properties of the struc-
ture, there are only three, which is an advantage in analyzing the system. The expressions uf, ,, uf,, uf, are deter-
mined from (3.7) while the variation of pressure p* is calculated from

ae?% (®)
P* =Lif G 0) B, Ly = — ¥ —. (4.4)
0L
where the coefficient w(w) depends on the oscillation frequency and is referred to the total variation of the displacement
of the flange at the bottom of the tank. The remainder of the block diagram is the same as in Fig. 5.

If the geometry of the bellows is such that we may assume Ay = Ay = Agy = 0,

the velocities uf,,, uf,,, uf, are determined on the basis of (3.7) without summation .
and the block diagram is simplified, The variant of the modified part of the block W Cip]

diagram corresponding to this case is shown in Fig. 7. 8 -
KBf (&) B

Here the oscillations Bf (&1, @) of the tank bottom cause only a variation of the
pressure p* at the inlet to the first tube, the oscillations Bf (£, @) of the pump affect
the velocity of the liquid at the outlet from the first tube and at the inlet to the sec-
ond, and the oscillations Bf (Ep, ®) of the injector head affect the velocity of the
liquid at the outlet from the second tube.

The relations between the dimensionless oscillation frequencies for the various elements are established from the
equalities

R A . -
Hence

8= 51, S == 5102 O = 5qs

5% l an _ han (4.5)

The multiloop system shown in Fig. 5 may be simplified by replacing the elements with feedback circuits by
their equivalents without feedback. An example of this substitution is shown in Fig. 8. The equivalent element with
complex ratio K* [B, v] expresses the relation between the variation of chamber pressure and the variation of propellant
injection rate:
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KB plL
K* [B, v] = 1—_—[%%—9—1172 (4. 6)

The hodograph of vector K* [B, v] to the scale Ly scarcely differs from the hodograph of vector K [B, ul, shown

in Figs. 1 and 2.

An analysis of the properties of the system shows that the most favorable conditions for exeiting instability exist
when the natural frequencies of the lowest harmonics of the structure and of the propeliant line are close together. At

HBlEw). 8]

Fig. 7

frequencies close to the natural frequency of the structure wy,, as follows from (2.4),
N > Ny N = M (nsEm), and we may therefore put, in the first approximation,
e =1Nm=0 (m=1, 2,..., m=kn). Inthis case the block diagram of the sys-
tem is simplest; for one propellant line it is as shown in Fig. 9.

The complex ratios K* [v, pl, K* [v, p*] of the equivalent elements for the
propellant line may be determined from Fig. 5. The complex ratio K* [v; u] presents
more difficuity. It may be obtained either from Fig. 5. by combining the effects of
Ufyas Uy ufy using (3.4), (3.5), (4.3), or by using the formulas of [9], putting. on
the basis of (3.4) and (3.5),

fwg = fw (1 + Agy) — 7"21fn11 . fw1 = fow (1 + Ag) — Apafno

fo = fno (1 + Agg) — Azzfnw ‘

We obtain a further simplification by replacing elements with complex ratios K* IB, v], K [», p] by the equiva-
lent element (Fig. 10), in which case

K* [B, v]
Kwk [ﬁ, v] =71 K* [ﬁ, v] K* [v, p} Ly

(4.7)

The complex ratio K** [B, v] expresses the relation between the variation 8 of chamber pressure and the variation

v of the propellant injection rate,

allowing for the reaction of the propellant line on this pressure. Now the variation v

Fig. 9

is due only to the variation of pressure p* upon admission of propellant into the line and to the motion of the pump and
the injector head relative to the undisturbed flow, denoted symbolically by the variation of velocity u.

5. Figures 4-10 allow various problems to be solved:; effect of the parameters and their combinations on the
stability of the system under design conditions, designation of parametric relations calculated to ensure stability. choice
and specification of stabilization techniques (including the use of automatic control of propellant supply to the chamber)
[11,12], determination of the permissible region of variation of certain parameters for given values of the remaining
parameters, and, finally, allowance for propellant injection oscillations in studies of high-frequency vibrations in the

chamber.

The properties of the system depend on a considerable number of physical parameters, many of which are inti-

mately interrelated. For example
the values of f;, f.,fn, Change.
the motor suspension lead to varia
system becomes very complicated
vehicle and a LRM whose paramet

, due to expenditure of propellant during flight, hy and m decrease, Q increases, and
Increase or decrease in the thickness of the tank bottom or changes in the rigidity of

tion of the values of @, fuis fur fnp- 1 the general case, therefore, analysis of the

. In practical cases it is simplified somewhat, since one must deal with a specific

ers are either known or may be varied within certain limits.

We shall note certain general properties of the system, leaving out peculiarities connected with variation of the
many parameters over wide limiis. Analysis of the equation

L —K* (8, v] K* [2, p] Ls—0,

which is characteristic of element (4. 7), shows that for certain relations between the parameters of the chamber and the
propellant line its complex roots lie in the right half-plane and therefore the element (4. 7) may be unstable. This

agrees with the conclusions of [5].
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It is characteristic of the dynamic system that it may be unstable, even if the combustion chamber is considered
as an ideal element with 8 = 1° =~ = 4 = 0, Formula (4. 7) will then be simpler:

. ko
K318, 71 = K v, plwols * (5.1)

We will establish an important property of the complex ratio K** [B, v}, which, for clarity, we shall formulate
for the case when K* {v, p] = K [v, pl. We shall consider that at both ends of the tube there are resistances satisfying
the conditions My < 1, YoMy < 1 (these conditions are always fulfilled in practice). The dimensionless natural oscil-
lation frequency of the liquid flow in the tube is the same as for a tube "open" at both ends [13]; it is equal to (1 — M,?)
in(zr=1,2,...) '

Since the hodograph of vector K[v, p lies in the left half-plane of Z = U -+ iV and the modulus of the vector
K[v.plhas a minimum at s;, = (1 = MP?) @n — ) n /2 (n = 1, 2, . . .), we find from (5.4) that the hodograph of vec-~
tor K** [B, v] will lie in the right half-plane of Z (Fig. 11a); the modulus of this vector attains a maximum at s; = syn.
This value corresponds to the frequency of the flow in a tube closed at one end. Thus, the presence of feedback at the
chamber in the form of a tube "open" at both ends forms an equivalent element whose natural frequency is equal to the
frequency of the tube closed at one end. The first natural frequency of the equivalent element (5.1) is lower by a factor
of two than the first natural frequency of the liquid flow in the tube between the tank and the chamber.

The stability of the closed system shown in Fig. 10 may conveniently be analyzed using the phase-amplitude cri-
terion [7]. Figure 11 shows a typical form of the phase-amplimde frequency characteristics of elements of a system re-
lating to the simplest case when the propellant line consists of a uniform tube K#* [v, p*] = K [v, p*], K* [v, u]=

=K [v, ] and the combustion chamber is an ieeal element. The curves b, ¢, d, e represent, respectively, hodographs
of the vectors

"

K [0, B Ly, = Apee P,
K [N Bl Lin= Aye ™
K [v, p*] = A,p0e "7,
K [v, u]l = Avuei%u ,
K** B, o] = Age'®.

Each element in Fig. 10, taken separately, is stable, and so the closed system will be unstable only if, for
0 < s; < oo , the open-circuit phase-amplitude characteristic

[Apsd g €XD i (Pe -+ Pppe) + Audpy €XP i (Py + Pon)] Ag exp i (5.2)
on the plane Z = U + iV includes the point (1, i0).

On the basis of formulas (2.5), (2.6), (3.1), and (3.2) of [9] we may conclude that the moduli of the complex
ratios Ayedy o, AyAyy are proportional, respectively, 10 ngfpfuohy / L nyfny® where ny is the axial load factor of the
vehicle. If fy, = 0, the circuit breaks down, and a closed system does not exist.

|
i
i

V when f,, =0 (p* = 0), the system remains closed, and the
‘ variation of propellant injection into the chamber is caused by motion
)]

/2] of the injector head. As is evident from Fig. 1la,c,e, in the range

: 0 < 5 < oo there is a value sy = s7, such that @y, + Qo -+ §g = 0.
The system will be unstable if Aydyydg > 1 whens; = sg. The best
Fig, 10 conditions in a situation of this kind correspond to @, = s,,.

ﬂ /Y[%,ﬂ] ,

Klv.uj

Mostly, %y, 5= Oy fup F 0, and variation of propellant injection into the chamber is caused by motion of the bot-
tom of the tank and the injector head. There are two possibilities: fpifne >0 the solid curve; and fnf,, <O, the
broken curve in Fig. 11b. It can be established from an analysis of (5. 2) and from the curves of Fig, 11 that, in the
case fpy fn,y, > 0, the possibility of loss of stability at the lower natural frequencies increases, while for f, f,,, <0 it
decreases compared with the case f,, = 0. Other conditions being equal, the possibility of exciting instability increases
as ny increases, while for f,,f,, > 0, it is greater for greater hy/l. Damping of the structure (€,) and the resistances
in the feed line (M, . M;) promote stability of motion. The greater the pressure drop in the injectors, the more stable
the system,

The stability criteria of the system are less obvious when the chamber cannot be treated as an ideal element and
the propellant supply system has a pump. For bipropellant systems they are even harder to discern. For many types of
LRM vehicles (particularly with a liquid-reactant gas generator operating on the basic propellants) the dynamic system
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is more complicated and may include automatic equipment for controlling the propellant supply to the chamber [4].

The linearized equations will only yield conclusions regarding the stability or instability of the system. If the
system is unstable and random oscillations build up, the assumption of linearity becomes invalid. Nonlinearity of the
equations for the combustion chamber, the possibility of cavitation effects
in the feed lines, etc., lead to a change in the dynamic properties of the
system, and a self-oscillating regime may develop in the system.
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