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In the analysis of slow processes with characteristic time greatly exceeding the time of propagation of the pressure 
wave through the chamber,, the working model used for Iiquid-propellant rocket motor (LRM)chambers is characterized 
by the fact that following injection all the fuel particles are converted into the end products Of combustion in the 'time 
required for atomization, heating, vaporization, mixing, and chemical reaction. This t ime ,  Which in a given model is 
the same for al l  fuelparticles, is called thec0mbustion time. For the simplest model the combustion time is independ- 
ent of the chamber pressure. 

Several mechanisms have been proposed for combustion instability in the  chambeh One was first pointed out by 
Karman [1, 2]. It is based O n the fact that the rate of propellant injection into the chambe r has a delay relative to the 
pressure drop in the injectors of the order of the relaxation time of the feed line, while combustion follows the rate of 
injection with a lag equal to the combustion time. The half-period of the oscillations is approximately equal to the 
combustion time and the relaxation time of the system. 

Ahother mechanism for the generation of low-frequency bseillati0ns, which is independent of the process of pro- 
pellant injection into the chamber and has therefore been called internal chamber instability, was proposed in [3]. It is 
based on the fact that"the combugtion time inthe  oscillating mode is also an 0Sciilat0ry quantity, The combustion rate 
reaches a maximum when the rate of decrease Of combustion tlme is greatest, and a minimum when the rate o f  increase 
of combustion time is greatest. If these oscillations coincide in phase with the pressure oscillations in the chamber, 
favorable conditions for self-excitation exist. 

A detailed analysis of the simultaneous action Of both excitation mechanisms was given in monograph [4]. 

Analysis of the stability of operation of a rocket motor, allowing for compressibility of the liquid in the feed line, 
for the simplest monopropellant system, shows that the critical delay t ime depends on the length of the line and de- 
creases with the increase in the frequency of Oscillation of the liquid in the line [5]. The best conditions for self-exci- 
tation occur when the frequency of oscillation in the feed line is close to one of the natural frequencies of the gases in 
the chamber. These oscillations are usually called high-frequency oscillations. The mechansim of high-frequency 
instability with constant rate of propeilant injection into the chamber was examined in monograph [4] for purely longi- 
tudLnal oscillations of the gases. : 

The stability of operation of LRM depends On the elastic properties of the vehicle in which the motor is mounted. 
There is severe additional feedback between the combustion chamber and the feed lines through the elastic vehicle 
structure. This question was examined in [6] with reference to a monopropellant system with an incompressible fuel. 

The case may arise in practice when the natural frequencies of the wave processes in the feed lines are of the same 
order as or lower than the oscillation frequencies determined by the combustion time. This becomes especially impor- 
tant if the characteristic frequencies of the elastic oscillations of the vehicle structure, or of the test bed on which the 
chamber is mounted, are close to the frequencies of the waye prdcesses in the feed l ines i  Such cases are examined 

below. 

in this paper the concepts of low-frequency instability of LRM are further developed. A closed system may be un- 
stable even if ttie combustion time is zero. The frequency of thi s type of instability' is ~determined 15'y the t ime  of propa- 
gation of elastic waves in the feed ifnes and in the structure and may vary widely. The combustion t ime affects the 
phase relations and may be an additional Cause of excitation of oscillations. 

The dynamic system consists of separate elements joined on the basis of the boundary conditions. Determination 
of the parameters of tliese elements is, generally speaking, an independent and very complex problem. T h e  closed sys- 
tem, represented by a block diagraml is of the muir[loop typei The transfer functions of the feed lines are obtained in a 
form such that their coupling with the vehicle structure is complete.  A solution is obtained in the linear formulation, 
and the properties of the transfer functions of the separate elements and of the system as a whole are analyzed using the 
special methods of automatic control theory. 

1, We shall assume that for low-frequency oscillations: a) the gas pressure t~ at each moment of t ime is practic~ 
ally the same throughout the chamber; b) the combustion t ime r ~ is t he same  for all fuel particles,, c) the gas flow 
through the nozzle is quasi-steady. ,The following linearized . . . . .  mass balance equation, for the chamber gases was obtained 

in [3]: 
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where 

~ z +  (t - -  ~,) ~ q '~  N --'c*) - - A  [ ~  (n - -  ~ * -  i) - -  ~ (z - -  ~* - -  I)] + 

-1- (1/~ - -  H - -  2A) lx~ ( z  ~ z * )  q -  (1]~ -+- H q- 2A:) ~ ( z  ~ x * ) ,  

(1.a) 

~ 3  ~ noO s  1 ~ ~,~1Q ~ _ _  m2O 

i r - m 2  ~ t T ~ ( I .  2 )  
H =  ~-r-- - r-----mlO , z-----~,  x * = ~ -  , 

m S, m 1 are the mass inject ion rates Of oxiatzer and fuel~ p~, * ~ rn~, m l  are the chamber pressure and the mass injection 
rates of oxidizer and fuel in the undisturbed regime;0  is the chamber relaxation time; v is a factor representing the in- 
teraction between the combustion process and the oscillations in the combustion chamber. 

The coefficient A allows for the effect of temperature oscillations. It characterizes the chosen propellants and 
depends on the ratio r of their mass flow rates in the undisturbed regime and on the chamber pressure. For ordinary hi-  
propellant motors, A is a very small positive quantity. 

in analyzing the low-frequency instability of a closed system it is of interest :o examine in the first approximation 
the simple chamber model i n  which combustion t ime r ~ is independent of pressure (v=  0), while the gas temperature in 

the chamber is constant irrespective of the pressure oscillations and the propellant ratio (A = 0), 

a~ 
d--z + [3 -~ (% - -  H) 91 (z ~ X*) + (% + H) ~z (z-~  z*). (1.3) 

This model is similar to that of a monopropellant system, but if the properties of the Oxidizer and fuel lines are 
different, it may be expected that the bipropellant system will be  considerably more complex. 

The dimensionless variations #i, /~ must be determined from dynamics of the oxidizer and fuel lines. 

We shall express the dynamic properties of the combustion chamber in terms of complex ratios. Since the varia- 
tion of propellant injection into the chamber is assumed to be harmonic ,  taking into account the delay argumeats z - r* 
and z - r* - 1, we have [7] 

~1 ( g - -  "~*) -~" ~1 ( g) e -is 'r* ~ -  [~le i s (z- ' :*)  ( sg  = ~ t ,  $ ~--- ~ 0 )  , 

~1 (~ - -  x *  - -  i )  = ~ l e  i s ( ~ - ~ ' - l ~  �9 

Here ~ is the oscillation frequency, We shall seek a solution of (1, 1) in the form 

( z )  = ~te iSz, ~ ( z  - -  x * ) = ~  ~e  ~ ' ' )  . 

Then the complex ratios giving the relation between the output and the input coordinates are found from the 

expressions 

d - ~ v ' ~ ' (  is -l- t ~  v) eis'c*, dx=I /2- -  H - - 2 A ' +  " Ae-i~, (1.4) 

d~ : !/~ q" H + 2A  + Ae "is . 

Hodographs of the vectors K [[L Ix1], K [1~, I~] in the complex plane Z == U + iV in the interval 0 ~< s g ~ are 

spirals contracting toward the origin of coordinates. The smaller r*, the more the spiral is compressed and the less the 

phase delay r for given values of s. These are typical  aperiodic elements of the first order wi thde lay .  

Graphs of the hodographs of the vectors K [1~, P~] for H = 0. 214 are shown in Figs. I and 2, Curves 1 and 2 are 
plotted for A = v = 0, curve 1 corresponding to r ~ = 0.5 and curve 2 to r* = 1.5.  Figure 2 shows the effect of the coeffi- 

c ient  A. In this case the graphs are plotted for r*=  0.5 and v = 0, curve 3 being for A = 0, curve 4 for A = 0.05, and 
curve 5 for A = 0.1.  If it is assumed, for example,  that A = 0, u = 0.2, the graph practically coincides with curve 3. 

For small  values of s. the coefficient v has almost no effect either on the modulus or on the argument of the com- 

plex ratio, while increase of A leads to increase of the modulus, the argument remaining  almost unchanged. 

2. Variation of the pressure in the combustion chamber causes a variation in vehicle acceleration, or, if the LRM 

is mounted on a nonrigid test  bed, a change in the strains in the bed, including the propellant l ines.  In both cases the 

motion of the structure and of the attached propellant lines leads to a change in pressure upstream from the combustion 

chamber injectors. 

Let us examine the disturbed motion of the vehicle structure. The undisturbed (design) mode of the system corre- 

sponds to the condition when the supply of fuel to the combustion chamber and the motor thrust are constant with the 
vehicle in straight flight. Since over tens of cycles of the oscillations studied the mass of the vehicle hardly changes 
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from fuel expenditure,  we shall "freeze" the coefficients o f  the equations of motion, i. e. , the leve l  in the propellant  
tanks, the mass of  the vehicle ,  and the frequency and shape of  the natural  e las t ic  oscil lat ions of the structure over short 
intervals wil l  be considered first. 

"( ,  ff'bL- ,,,r 

Fig, 1 
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Fig. 2 

The variat ion of the d isplacement  of any cross sect ion of the structure in the direction of its longi tudinal  axis may  

be represented in the form of the sum 

~o 

q (:~, t) =q ,  (t) + ~ 1,~ (~) q~ (t). (2.1) 

Here qc(t) is the var ia t ion of the d isplacement  of the center  of mass of the vehicle ,  in(X) is the shape of the n - th  
normal harmonic of the longi tudinal  oscf l la t iom of the structure, qn( t ) is  the d isplacement  of the re la t ive  center  of mass 

for oscil lat ions of the n- th  harmonic  of the section for which in(x) = 1. 

Determinat ion of the natural  frequencies On and the character is t ic  functions in(X) for an e las t ic  structure is an in-  
dependent  complex problem and will  not be discussed here .  We shall  consider these data to be known and choose the 

frame of reference so as to satisfy the relat ion 

l N 

I '~ (~) I .  (~) d~ + ~ ~,In~ = 0 (~ = i, 2,..., N ) .  (2.2) 
0 k = 1  

in which l ,  re(x) are the length and mass per unit length of the structure, and m k are  concentrated masses. In the first 
approximation,  these masses may  be taken to be those of the motor, the propel lant  pumps, the propellants in the tanks, 

e t c . ,  which, as a rule, are e l a s t i ca l ly  connected with the walls.  

Oscillations in the propel lant  llnes cannot, in pract ice ,  cause longi tudinal  oscil lat ions of the structure, and there-  

fore the la t te r  are due o n l y t o  var ia t ion in thrust. 

We denote by m the mass of the vehicle ,  by f~ the frequency of the natural  e las t ic  longi tudinal  oscil lat ions of the 
structure, and by k ~ the proport ionali ty factor between the variations of chamber  pressure and thrust.  We assume that  the 

thrust vector  coincides:with the longi tudinal  axis of the structure. Then, from (2.1)  and (2.2),  the l inear ized  equations 
of perturbed m o t i o n  of the center  of mass of the veh ic le  and elas t ic  osci l la t ion of the structure reIa t ive  to the center  of 

mass m a y  be written in the form 

a ,  q c ( t )  k ~  ~ k ~  ~  ~s d~qn (t) ps Inv ~ (2.3)  
- - - 2 W -  = ? ,n ' ~, a t ,  + o ~ q ~ ( t ) =  ,~,~ . 

Here m n is the reduced mass of the structure, and fnv is the value of the character is t ic  function at  the sect ion 
where the chamber  pressure is converted into thrust. For the sake of definiteness,  we shall  ident i fy  this sect ion with the 

injector  head;  

l N 

0 k=l ' 

We introduce the dimensionless displacements  and t imes 

qc qn ao 
rl~ = " T "  TI,~ = ' - ( -  , ~ t ' y  , 

where a0 is the reduced speed of sound in the e las t i c  structure, 
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Keeping in mind the fact  that ~ (z) = [5 exp isz,. sz  = •t = ~ ,  we may write the solution of (2.3)  in the form 

nc (~) = ne J ' a ,  ' I .  (~) = '],~e '~a. 

The relations between ~c, ~n and 8 are expressed by the ratios 

k* k,~ 
K [n~, 13] = - -  ~ ,  K [n,~, 13] = ~ �9 ( 2 . 4 )  

The dimensionless natural frequency ton and the ampli f icat ion factors k*, k n are given by 

= ~ Z k* k~176 ca n ao mao2 , k n =  k* ra , = m,~ fn~.  ( 2 . 5 )  

For frequency variat ion in the range 0 ~ co ~ q- e~ , the hodographs of vectors K ['ie, 13] K [~n, [3] in the com-  
plex plane Z = U q-  iV  will  be straight lines coincident  with the real  axis. 

Due to energy dissipated in the mater ia l  and joints of the structure, the natural  oscillations of the la t ter  are always 
damped,  and so inf in i te ly  great values of the vector K ['In, 13] are not physical ly  possible at  to = w n. When it is neces-  
sary to determine the oscil lat ions at  resonance, resistances proportional to the first power of veloci ty  are introduced 
into the e las t ic  osci l la t ion equations. 

In this case the ratio K ['In, 13] will  be complex 

K [ % ,  ~] = k , ~ / D , ~ ,  D,~ - -  o~,~ - -  o~ + 2s,~oJ, ( 2 . 6 )  

where s n is the damping factor for the natural osci l lat ions.  

The s tabi l i ty  analysis is s implif ied i f  the forced oscil lat ions of the structure are not expanded as a series in the 
character is t ic  functions fn(X), but are represented in the form 

where f(~, to) is the shape of the forced oscil lat ions.  For a nonuniform rod with a stepwise change isa mass and stiffness 

along its length, even with e l a s t i ca l ly  suspended concentrated masses, the functions f(g, to) without a l lowance f o r  
energy dissipation, have real  values and prove to be compara t ive ly  s imple .  There are no essential difficulties in deter-  
mining these functions, and therefore the forced oscil lat ions of the structure may  be t reated in the form (2.7) instead of 
(2 .1) .  When energy dissipation is considered, the functions f(g, to) are complex .  

3. We shall assume for purposes of analysis that the propel lant  system is one in which the propellants are de-  
l ivered from the tanks to the combustion chamber  by pumps. This system is common in high-thrust  motors and includes 
as a special  case systems in which the driving force is compressed gas. The liquid propellants and the supply lines are 

not absolutely rigid, but have a cer ta in  e las t ic i ty  which may  be shown to have a considerable influence on the osc i l l a -  

tory processes in the l ines.  

The oxidizer  and fuel lines are ident ica l  in structure. Each consists of three e lements  connected in series; pipes 
leading from the tank to the pump, the pump, and pipes leading from the pump to the injectors [8]. The first pipe is in 
many instances straight and uniform, while the second is usually more complex in shape. It includes a valve,  the motor 
head space, and, for the coolant ,  an addi t ional  system of branched pipes and a narrow passage. The situation is not one 
charac ter ized  by a regular geometry,  which would al iow an exact  solution of the problem of combined osci l la t ion of 
the e las t ic  volume and the l iquid.  Because of the e las t i c i ty  of the propel lant  lines however, their volume varies with 
var ia t ion of pressure, so that  a variat ion of propel lant  in jec t ion  into the combustion chamber  does not coincide with a 
variat ion in flow through the pump. The quanti ta t ive differences depend on propel lant  l ine volume and the ratio of 
osci l la t ion frequencies.  

To solve the hydrodynamic problem, we replace the line 
a b 

f n t  ~ ~ w  v,: f"" joining the pump to the chamber  with a mode l  in the form of a 
I--" ! 'z, f--" , 2 F "  v,, vz, v,e vet straight tube of  constant cross section. We assume, in the first ap -  

~ ~  proximation,  that the in jec tor  head and the inner walls of the 
chamber  are rigid. Then pressure variat ion in the chamber  wil l  not 
cause a change in volume of the propel lant  lines, which wil l  vary 

9' c . ' d  ~e only due to the e las t ic i ty  of the outer walls. In ac tual i ty ,  the inner 

~,_ . . ~ , ' t _ l _ ~  ~_ta_@/~ wails of the chamber  and the injector head have some compl iance ,  
and if  this is commensurate  with that of  the outer walls or of  the 

Fig. 3 l iquid, i t  must be taken into account. 
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The model  for the oxidizer  and fuel lines thus consists of two straight uniform tubes between which the pump is 
mounted. There may  be compensat ing bellows at the ends of the tubes, with negl ig ib le  r igidi ty  in the  axial  direction 
(Fig. 8). In our model  we shall consider the bellows as a volume, at any point of which the pressure variat ion is the 
same, while the volume variat ion is proportional to the pressure variat ion and the change in distance between end 
sections. 

The propel lant  lines are connected to the structure: the near end of the first tube is joined to the bot tom of the 
tank the far end of the second tube is joined to the injector head of the combustion chamber,  while the pump is sus- 
pended from the structure on a frame or a t tached to the combustion chamber  [8 ]  The propellant  lines undergo forced 
oscillations whose nature is determined by motion of the corresponding sections of the structure. The presence of the 
bellows allows the tubes and the pump to osci l la te  a t  different ampli tudes.  

We denote the character is t ic  functions as follows: fn l  for the flange at the bottom of the tank, fnw for the pump, 
and fnv for the injector  head.  Since the bottom of the tank and the thrust f rame have some elas t ic i ty ,  the values of 
functions /nl, fnw, /nv are not the same as the values of the functions for the corresponding frames of the structure. The 
difference is the greater,  the closer the  natural  osci l la t ion frequency of the structure and the par t ia l  osci l la t ion frequen- 
cies of the bot tom of the tank with the propellant,  the motor, and the pump. The values of functions fnl, /nw,/nv may 

be modif ied  to some extent  by design measures and may  therefore be related to a number of var iable  parameters  of the 

system. 

The hydrodynamic problem for the propel lant  lines is to de termine  the variat ion of propel lant  inject ion into the 
chamber  as a function of the smal l  longi tudinal  oscil lat ions of the structure and the variat ion of chamber  pressure. 

We assume that the propellants are perfect  liquids, and that the undisturbed flow in the tubes is uniform - ve loc -  

i ty v0, pressure P0 and density P0 constant;  we al low for the e las t ic i ty  of the tubes via the reduced speed of sound. 

Since the equivalent  tubes are assumed to be rigid, and friction between the liquid and their walls is nor al lowed 

for in the calculat ion,  small  movements  of the tubes in the axia l  direct ion do not affect  t h e  flow veloci ty ,  

The effect  on l iquid flow of the motions of injector  h e a d  pump, and tank bottom, and also changes in the vol-  

umes of the bellows are treated as perturbations of the boundary condit ions.  In view of our assumption that the undis- 
turbed motion is quasi-s teady,  the hydrodynamic problem may  be solved as if the tubes were motionless.  

We shall  employ  the method of solution proposed in [13], introducing analogous notation.  We denote the d imen-  

sional variations of pressure and ve loc i ty  in the j - th  tube by Pxj' Vxj' the coordinate  of the flow cross section in the j - th  
tube by xj, and the t ime  by t with the following relations between the dimensional  and the dimensionless quantities: 

vx j  PxJ 
vj - -  ~J  , PJ : pojao~ ' 

where a0j is the speed of sound in the undisturbed flow, 
pump, j = 1, and beyond the pump j = 2. 

xj 
si = fl ! i  "ci = t ao_~i ~J=  li 

aoj ' l j  ' ' 

and lj is the length of the j - t h  tube.  For the tube leading to the 

Let us examine  the boundary conditions.  If the pressure of the gases above the surface of the l iquid in the tank 
remains unchanged in the presence of oscil lat ions of the structure, pressure perturbations at  the outlet  from the tank to 

the tube wil l  be caused only by osci l lat ions of the tank bot tom.  Neglec t ing  wave formation at  the free surface in the 

tank, we may write 

o c  as (t)]. 

Here p01, hi are the density and the height  of the column of l iquid in the tank; ~n is some coeff ic ient  depending on 

the rat io of the diameters  of tank and tube, the shape of the bottom, and the conditions of l iquid flow from tank to tube.  
We divide this var ia t ion by p01a20 - the parameters  of the undisturbed flow in the tube ahead of the pump.  We obtain 

co haao 2 
, __ Px N c  = N n = Ne~:nlnl (8.1) 

P* = - -  c~ (Nc~]e + ~d Nn~ln), P - -  p01ao z' I aox z ' " 
n = l  

The ve loc i ty  variat ions at  the ends of the tubes are de termined from the conditions of flow continui ty in the pro-  

pel !ant  l ines,  They depend on the properties and locat ions of the bellows. 

We express the properties of the bellows by means of two independent  dimensionless parameters .  The geomet ry  

pa ramete r  Xj takes account  of the var ia t ion in the geomet ry  of the corrugations and in the cross-sect ional  area of the 

bellows. 
1 ~ ~V_~j I _ _  
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Here F0j is the flow-passage cross-sectional area of the j- th tube, Vxj is the volume of the bellows, x0j is the 
distance between the ends of the bellows under undisturbed flow conditions. 

The elastic parameter rj takes account of variation of the compensator volume t ~ 
due to pressure variation 

= x j  F o i l  j ---- L - ~ x j v x = v o f l  . 
Fig. 4 

The geometry of the eorrugatiom of the bellows varies in proportion to the 
difference of the values l a w -  In1 and ]nv - -  fnw �9 We introduce additional subscripts for the bellows parameters, 
pressures, and velocities at the ends of the tubes: 1 - for the tube inlet, 2 - for the tube outtet. 

We take a0z as the scale of the dimensionless variation w of the flow velocity through the pump and write the 
dimensionless variations of generalized velocities of the structure as 

1 I d q n  (t) a O 
_ d q c ( t )  _ " a ~  u - -  - -  - -  - - i ( o  

ue = - - a ~  ----d{--" - -  teO ao2 ~le, n - -  - -  ao~ d t  - -  ~ I n  �9 (3.2) 

has Since a positive displacement of the structure q(x, t) been assumed to correspond to displacement in a direc- 
tion opposite to the positive direction of the velocity vj of liquid flow in the robes, "minus" signs have been introduced 
in (8.2). 

~t 

Fig. 5 

Taking pj (~, xj) = pj (~j) exp isj~j_ and denoting by v exp is~x~ the variation, divided by a~, of the rate of in- 
jection of liquid into the chamber h = ao~ / ao,, we form the equations of continuity. [a order to make fuller use of the 
results of the solution [9], we write them in the form 

v21 = w h  -Jr- hu fw2  -F- is lr2tP~l  , 

v~i = w -~- U]wl - -  is~rmpx~ ' (3.3) 
v ~  = v + u]v  ~-  is~r~2p~ ' 

where u/w~,  u f w x ,  u f  v are the velocities described by the  motion of the characteristic sections of the propellant lines 

together with the  structure. 

There may be some gas volumes on the suction side of the pump due to cavitation effects [10]. Assuming that the 
variation of these volumes is inversely Proportional to the pressure variation upstream from the pump, the equations of 
continuity of flow in the propellant lines will have the same form, if we understand r~l to denote the  generalized elas- 

tic characteristic of  the bellows combined with the gas volumes. 

Possible arrangements of the bellows in the propellant lines are illustrated in Fig. 3. For Fig. 3a 

= - 0  + E + x,,) - x,r  . . ,  

o o  

(3.4) 
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For Figs. 3b and 8c 

co 

ulv = uc + ~ tiny (1 + ~a2) - -  ~ad,,wl un.  (a. 5) 

The expressions Ufw 2 for Figs. ab, d, Ufwi for Figs. ab, c, and Ufv for Figs, 3a, d may  be obtained from (8.4) and 
(8.5),  by putting the coefficients X21, X12, X22, respect ively,  equal to zero. In this case we must put the coefficients 
rat, ri2, r2= equal to zero in (8.8) .  

When the bellows are located between the tube and the tank (Fig. ab, d), the variat ion of flow veloci ty  at  the out-  
le t  from the tank will  differ from the variat ion vi i  of ve loc i ty  at the inlet  to the tube, and therefore the variat ion of the 
pressure drop p* - Pli will  be expressed by the relat ion 

where ~0 i is the resistance coefficient ,  referred to the veloci ty ,  at the outlet  from the tank. 

For Figs. 3a and 8c 

p * - - P i i = , i M i v i t  ( M i  = v~ 
aoi / " 

We may  also use (3.4) and (3.5) in the case when the motion of the structure is represented in the form (2.7).  In 
this case we must put u c = 0 and instead of infini te sums of the character is t ic  functions s imply take the differences of 

the shapes of the forced oscillations 

ul~ = - -  i~o a0 ~ [! (~w, co) (t + ~a~) - ! (~t, co) ~ a t l ,  
g 0 I  

Ulvol = -- io ~ ~ [] (~w, co) (t @ )~la) [ (~v, co) )~ta] , (3.7) 

~1, = - -  ico ~ ~ [ /(~,  o~) (t + X~a) - -  ] (~o,o~) ~aa] , 
03 

where ] (.~t, (o), J (~w, co), ] (gv, co) are the shapes of the forced oscil lat ions of the flange at  the bot tom of the tank, the 

pump, and the injector  head.  

By introducing the summing factors u]~, ufwl, u]v, we have reduced the propel lant  supply scheme and the 
boundary conditions of the problem to the structure investigated in de ta i l  in [9]. The results of that paper are used here 

without being set out. The formulas for the complex ratios K [Pai, P*], K [Pal, wl, K [v, Pt2], K [v, p], K [w, P], 
K [w, Pta] retain their previous form, and the formulas for K [Pai, Ufw~], K 'Iv, ufvl, K [w, u]wl], K [w, uivl may be 
obtained from the expressions K [Pat, ul, K [v, ul, K [w, u], given in [9] by putting ]wi = [w~ = Jv = t.  Instead of one 
block K [w, u] there will  be two para l le l  blocks with ratios K [w, u]vl and K [w, ufwtl = - -  t .  This difference arises 
from the fact  that, in general,  var ia t ion of the geometry  of the bellows of the second tube is the result of two s imul-  

taneous displacements  - of the pump and of the injector  head.  

The ratios for the first tube will  be expressed by other formulas, if the bellows are located between the tube and 
the tank'(Figs.  3b, d). They may  be obtained from (3.6)  by the method described in [9]. The influence of the locat ion 

of the bellows on the dynamic  properties of the propel lant  l ine becomes not iceable  if  the compliances  r n and r2i of the 

bellows are considerable,  or if  the geometr ic  characteris t ics  I~it] >~ 0, I~tl >~ 0. 

4. A block diagram of the physical  e lements  is shown in Fig. 4. Here 1) is the chamber,  2) the vehic le  structure 

(or test bed), 3) the fuel l ine,  4) the oxidizer  l ine .  Perturbation of the mot ion of the structure causes a var ia t ion  of 
pressure in the propel lant  lines and hence a var ia t ion of propel lant  inject ion into the chamber.  A pressure var ia t ion 

develops in the combustion chamber,  affecting the propel lant  lines and the motion of the structure. The system is thus 

a closed one and, moreover,  has posit ive feedback.  

Figure 5 shows an expanded block diagram which includes only one propel lant  l ine.  A second propel lant  l ine 

should be connected in accordance with Fig. 4. The motion of the structure is assumed to take the form (2.1) .  Here 

only one e lement  is shown for the n- th  harmonic  of the oscil lat ions of the structure. In fact  n = 1, 2, 3 . . . .  the e l e -  

ments being loca ted  in paral le l ,  as shown by the broken l ines.  

The system has three internal  feedbacks:  between the chamber  and the second tube - pressure p = Ie~, between 

the second and the first tube - ve loc i ty  w; the third feedback involves the chamber,  and results from the fact that the 

chamber  transfer function depends on mass propel lant  inject ion rate, while the propel lant  inject ion rate serves as an 

output coordinate for the tube. 
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Since the dimensionless parameters of the physical elements are different, while the variation of the boundary 
conditions at the ends of each tube is determined by the displacements of two sections of the structure, scale factors and 
summing factors have been introduced to connect the elements into the over-all  scheme. The composition of the sum- 
ming factors u[w v u fw ~ and uJv for Fig. 5 is determined by (3.4) and (3.5). 

The variation of the mass injection rate of propellant into the chamber depends on the variation of velocity v and 
the variation of density p22 at the right-hand end of the second tube. Thus, for the oxidizer, for example, we have 

rn~ = (Vo + ao~v) (1 + pz~)p0~Fo~, mz ~ = v0zpo~Fo~. 

Retaining only Small quantities of the first order and noting that Pzz = Pzz, on the basis of (1.2) we obtain 

/1 
t~ = p ~  + ~--~. 

It is convenient to express pressure P2z with the help of formula (2.12) from [9] for j = 2. Noting that ppezaoz2 = :  
= ~p8 ~ we have 

~t~ = Lie  + L2~, L 1 = (Mz-1 + ~2M2), L~ = p O / p0~ao ~.  ( 4 .1 )  

On the basis of (3.1) we conclude that 

L4 = - -  toZNe, Lsn  = - -  to~Nn �9 (4.2) 

We find expressions for the coefficients L61 , Ls~ i LTn, Lsn,  Lgn from a comparison of (3.2) with (3.4) and (3.5) 

Lex = __ icoa o / aox, Lo~. = _ itoa o / aoz , 

LTn = LeJ. = [law (t + ~1) - -  ~'~lfnl] ' (4.3) 
Lsn  = L~z []nw (1 + ~12) - -  )~lJnv] ' 

Lgn = L62 [fnv ( t  -~- ~'22) - -  ~.2ztnwl ' 

The part of the block diagram, corresponding to the representation of the displacements of the structure in the 
form (2.7), is shown in Fig. 6. Instead of an infinite number of blocks expressing the dynamic properties of the struc- 
ture, there are only three, which is an advantage in analyzing the system. The expressions uIw v u ] v a ,  ulv are deter- 
mined from (3.7) while the variation of pressure p* is calculated from 

, . ,~b~a]x (r (4.4) p* = L3! (~. to) f~, L8 = ~  ao?Z 

where the coefficient x(w) depends on the oscillation frequency and is referred to the total variation of the displacement 
of the flange at the bottom of the tank. The remainder of the block diagram is the same as in Fig. 5. 

If the geometry of the bellows is such that we may assume )~xs = )t21 = Xz~ = 0, 
the velocities u]wv u]w x, u] v are determined on the basis of (3.7) without summation 
and the block diagram is simplified. The variant of the modified part of the block 

diagram corresponding to this case is shown in Fig. 7. 

Here the oscillations I~] (~1, to) of the tank bottom cause only a variation of the 
pressure p* at the inlet to the first tube, the oseillatiom ~ / ( ~ w ,  to) of the pump affect 
the velocity of the liquid at the outlet from the first tube and at the inlet to the sec- 
ond, and the oscillations I~/(~v, to) of the injector head affect the velocity of the 
liquid at the outlet from the second tube. 

The relations between the dimensionless oscillation frequencies for the various elements are established from the 

equalities 

,0* 

u:,: 

Fig. 6 

Hence 

$ a 0 a 0 1 .  a0,l 
a -  0 - t o - 7 - = " 1 - ~ - 1  =s~-~-'~ " 

s = s lq ,  s~ = slq2, to = s l q t  

l aot 12 aot ( 4 . 5 )  aol 
q = 0 - 7 [ - x ,  q l - -  It a o '  q 2 = ~ a ~  " 

The multiloop system shown in Fig. 5 may be simplified by replacing the elements with feedback circuits by 
their equivalents without feedback. An example of this substitution is shown in Fig. 8. The equivalent element with 
complex ratio K* [~, v] expresses the relation between the variation of chamber pressure and the variation of propellant 

injection rate: 
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K [fl, ~1 Z~ 
K* [1~, v] = 1 - -  K [1~, ~1L~" ( 4 . 6 )  

The hodograph of vector K* [~, v] to the Scale L 1 scarcely differs from the hodograph of vector K [~, g], shown 
in Figs. I and 2. 

An analysis of the properties of the system shows that the most favorable conditions for exciting instability exist 
when the natural frequencies of the lowest harmonics of the structure and of the propellant line are close together. At 

Fig. 7 

frequencies close to the natural frequency of the structure w n, :as follows from (2.4), 
11. >~ ~le, ~1~ >~ ~lr~ (n 4=m), and we may therefore put, in the first approximation, 
~le = ~lr~ = 0 (m = 1, 2 , . . . ,  m q= n). In this case theb iockd iag ramof thesys -  
tem is simplest; for one propellant line it is as showrt in Fig. 9. 

The complex ratios K* Iv, Pl, K* [v, p*] of the equivalent elements for the 
propellant line may be determined from Fig. 5. The complex ratio K* Iv, u] presents 
more difficulty. It may be obtained either from Fig. 5, by combining the effects of 
uGi,  u/~1, u/~ using (3.4), (a. 5), (4.3), or by usirtg the formulas of [9~, putting, on 
the basis of (3.4) and (3.5), 

We obtain a further simplification by replacing elements with complex ratios K* I~, el, K [v, p] by the equiva- 

lent element (Fig. 10), in which case 

K* [13, v] ( 4 . 7 )  
K** [f~, vl = I - -  K* ItS, vl  K *  [v, P l  L~ �9 

The complex ratio K** [~, v] expresses the relation between the variation/3 of chamber pressure and the variation 
v of the propellant injection rate, allowing for the reaction of the propellant line on this pressure. Now the variation v 

Fig. 8 Fig. 9 

is due only to the variation of pressure p* upon admission of propellant into the line and to the motion of the pump and 
the injector head relative to the undisturbed flow, dengted symbolically by the variation of velocity u. 

5. Figures 4-10 allow various problems to be solved: effect of the parameters and their combinations on the 
stability of the system under design conditions, designation of parametric relations calculated to ensure stability, choice 
and specification of stabilization techniques (including the use of automatic control of propellant supply to the chamber) 
[11, 12], determination of the permissible region of variation of certain parameters for given values of the remaining 
parameters, and, finally, allowance for propellant injection oscillations in studies of high-frequency vibrations in the 

chamber. 

The properties of the system depend on a considerable number of physical parameters, many of which are inti- 
mately interrelated. For example, due to expenditure of propellant during flight, h t and m decrease, f~n increases, and 
the values of/n~, ]nw, ] .v  change. Increase or decrease in the thickness of the tank bottom or changes in the rigidity of 
the motor suspension lead to variation of the values of ftro ]nl, [nw, [nv" In the general case, therefore, analysis of the 
system becomes very complicated. In practical cases it is simplified somewhat, since one must deal with a specific 

vehicle and a LRM whose parameters are either known or may be varied within certain limits. 

We shall note certain general properties of the system, leaving out peculiarities connected with variation of the 

many parameters over wide limits, Analysis of the equation 

t - -  K* [~, v] K* [v, P l / .2  = 0 ,  

which is characteristic of element (4, 7), shows that for certain relations between the parameters of the chamber and the 
.propellant line'its complex roots lie in the right half-plane and therefore the element (4. 7) may be unstable. This 

agrees with the conclusions of [5]. 
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It is character is t ic  of the dynamic system that it may  be unstable, even if  the combustion chamber is considered 
as an ideal  e lement  with 0 = 1: ~ = v = A = 0. Formula (4. 7) wi l l  then be simpler:  

k0 
�9 K** [~, v] = t - - K *  [v, plko/~ " (5.1)  

We will  establish an important  property of the complex ratio K** [~, v], which, for clari ty,  we shall formulate 
for the case when K* iv, p] = K iv, p]. We shall consider that at both ends of the tube there are  resistances satisfying 
the conditions apiM 1 < 1, ~pzMz <s t (these conditions are always fulfi l led in pract ice) .  The dimensionless natural osci l-  
la t ion frequency of the l iquid flow in the tube is the same as for a tube "open" at both ends [13]; i t  is equal to (t - -  M~) 
in(n~ 1,2,...). 

Since the hodograph of vector  K iv, p] l ies in the lef t  ha l f -p lane  of  Z .~. U + iV and the modulus of the vector  
K[v, p] has a min imum at sin --- (t - -  M12) (2n - -  t) ~ / 2 (n = t ,  2, . . . ) ,we find from (5.4)  that the hodograph of vec -  

tor K** [~, v] wil l  l ie  in the right ha l f -p l ane  of Z (Fig. 11a); the modulus of this vector  attains a maximum at si = Sin. 
This value corresponds to the frequency of the flow in a tube closed at one end. Thus, the presenc e of feedback at  the 
chamber  in the form of a tube "open" a t  both ends forms an equivalent  e lement  whose natural  frequency is equal to the 
frequency of the tube closed at one end. The first natural  frequency of the equivalent  e lement  (5.1) is lower by a factor 
of two than the first natural frequency of the l iquid flow in the tube between the tank and the chamber.  

The s tabi l i ty  of the closed system shown in Fig. 10 may  convenient ly  be analyzed using the phase-ampl i tude  cr i -  
terion [7]. Figure 11 shows a typica l  form of  the phase-ampl i tude  frequency characterist ics of e lements  of a system re-  

la t ing to the simplest  case when the propel lant  l ine consists of a uniform tube K* iv, p*] = K iv, p*], K* iv, u] = 
= K  iv, u] and the combustion chamber  is an ieea l  e lement .  The curves b, e, d, e represent, respectively,  hodographs 

of the vectors 

K [~]n, ~l] Lzr ~ = ~ , e  ~ , 

K [lln, ~] L6z = Aue ~% , 

K i v ,  p * ]  = . % ~ , e  , 

K iv, u] -= Avu e~%u , 

K * *  [~, v] ----- Aoe ig. 

Each e l emen t  in Fig. 10, taken separately,  is stable,  and so the closed system will  be unstable only if, for 
0 ~< sl ~ oo , the open-c i rcu i t  phase-ampl i tude  character is t ic  

[Ar~,A~p. exp i ((Pv* q- (Pvp*) + AuXvu exp i (epu q- (~vu)] A~ exp i13 (5.2)  

on the plane Z = U + iV includes the point (t,  i0). 

On the basis of formulas (2.5),  (2.6),  (3.1),  and (3.2) of [9] we may  conclude that the moduli  of the eorhplex 

ratios A~.Av~. , AuAvu are proportional,  respect ively,  to nxfnifn~ha / l, nx/nv ~, where n x is the axia l  load factor of the 
vehic le .  If fnv = O, the c i rcui t  breaks down, and a closed system does not exist.  

W ~  When /nt = 0 (p* = 0), the system remains closed, and the 
var ia t ion of propel lant  in ject ion into the chamber is caused by motion 

�9 of the in jector  head .  As is evident  from Fig. 11a; c, e, in the range 

0 ~ sl -.~ oo there is a value sl = s~, such that qD,~ q- % u  + (P~ = 0. 

The system wil l  be unstable if  AuAvuA9 ~ t when s i = s~. The best 

Fig. 10 conditions in a situation of this kind correspond to co n ~-. hn. 

Mostly, ~nl 4 = 0, / n ,  4= 0; and var ia t ion of propel lant  in ject ion into the chamber  is caused by mot ion of the bot-  
tom of the tank and the injector  head. There are two possibili t ies:  ]nilnv ~ 0 , the solid curve, and [nl/uv <s the 
broken curve in Fig. 11b. I t  can be established from an analysis of  (5 .2)  and from the curves of Fig. 11 that, in the 

case ]nl/nvJ ~" 0,  the possibi l i ty  of loss of s tabi l i ty  at the lower natural  frequencies increases, while for ]nl/nw ~ 0 it  

decreases compared with the case fnl = 0. Other conditions being equal,  the possibi l i ty  of exci t ing instabi l i ty  increases 

as n x increases, while for 1nlfnv ~ 0 , i t  is greater  for greater  hl/ l .  Damping of the structure (~n) and the resistances 
in the feed line OPxM~, ~,M1) promote s tabi l i ty  of motion.  The greater  the pressure drop in the injectors, the more stable 
the system. 

The s tab i l i ty  cr i ter ia  of the system are less obvious when the chamber  cannot be treated as an ideal  e l emen t  and 

the propel lant  supply system has a pump. For bipropel lant  systems t h e y  are even harder to discern. For many types of 
LRM vehicles  (par t icular ly  with a l iqu id - reac tan t  gas generator  operat ing on the basic propellants) the dynamic  system 
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is more complicated and may include automatic equipment for controlling the propellant supply to the chamber  [4]. 

The linearized equations will only yield conclusions regarding the stability or instability of the system. If the 
system is unstabIe and random oscillations build �9 up, the assumption of linearity becomes invalid. Nonlinearity of the 
equations for the combustion chamber, the possibility of cavitation effects 
in the feed lines, e tc . ,  lead to a change in the dynamic properties of the 
system, and a self-oscillating regime may develop in the system. 
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